Week 20 2D Motion

3. Vx and Vy (A)

Name:

Week 20 2D Motion

rowing velocity $=4 \mathrm{~m} / \mathrm{s}$ current velocity $=2 \mathrm{~m} / \mathrm{s}$

First solve for the time it takes the boat to cross 12 m

$$
(D x)=(V x)(t)
$$

Then solve for how far down the current carries the boat
$(\mathrm{Dy})=(\mathbf{V y})(\mathbf{t})$

First solve for the time it takes the boat to cross 12 m
$\left(D_{x}\right)=(\mathbf{V x})(t)$

Then solve for how far down the current carries the boat
$(\mathrm{Dy})=(\mathrm{Vy})(\mathbf{t})$
3. $V x$ and $V y$ (B)
rowing velocity $=2 \mathrm{~m} / \mathrm{s}$ current velocity $=1 \mathrm{~m} / \mathrm{s}$

First solve for the time it takes the boat to cross 12 m

$$
(D x)=(V x)(t)
$$

Then solve for how far down the current carries the boat
$(\mathbf{D y})=(\mathbf{V y})(\mathbf{t})$

Airplane A will fly 100 miles East in 2 hrs. The other airplanes experience wind in the directions shown.

Airplane A will fly 100 miles East in 2 hrs. The other airplanes experience wind in the directions shown.

