Three Ways to Accelerate:
 1) Speed up

2) Slow down
3) ??

Centripetal Acceleration

 Acceleration toward the center of the turn

What does it depend on?

Which situation creates a more violent turn? (more centrip accel)

 Go into a turn slow

Which situation creates a more violent turn? (more centrip accel)

Go into a wide turn

Centripetal Acceleration

(accel due to turning)

Coaster Loops \& Pilots

g's measure acceleration

 not force!1 g = 10 meters/sec every sec

Which one is more likely to make the pilot black out?

$B L^{\prime}$

answer: A

Top of loop: danger of falling in

Centripetal Acceleration

(accel due to turning)

velocity squared
 $$
v^{2 \ell(m / s)}
$$
 $$
\text { accel }_{\text {CENTRIPETAL }}=\frac{v}{r}
$$
 r
 radius of turn
 $$
(m)
$$

The car takes a turn at $9 \mathrm{~m} / \mathrm{s}$.
a) What is the car's centripetal acceleration?
b) How many g's is that?
$\operatorname{accel}_{\text {CENTRIPETAL }}=\frac{v^{2}}{r}$ then divide by 10 to convert to g 's

The car takes a turn at $9 \mathrm{~m} / \mathrm{s}$.
a) What is the car's centripetal acceleration?
b) How many g's is that?
a) The v in the formula is the velocity in m / s.

The r in the formula is the radius, which is on the diagram.

$$
\begin{aligned}
\text { accel } & =\frac{v^{2}}{r} \\
& =\frac{(9)^{2}}{(5)} \\
& =\frac{(81)}{(5)} \\
& =16.2 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\text { accel }_{\text {CENTRIPETAL }}=\frac{v^{2}}{r}
$$

then divide by 10 to convert to g 's

b) To get g 's, divide by 1 g , which Earth's gravity: $10 \mathrm{~m} / \mathrm{s}^{2}$

$$
\frac{16.2}{10}=1.62 \mathrm{~g} ' \mathrm{~s}
$$

The car takes a turn at $10 \mathrm{~m} / \mathrm{s}$.
a) What is the car's centripetal acceleration?
b) How many g's is that?
accel $_{\text {CENTRIPETAL }}=\frac{v^{2}}{r}$
then divide by 10 to convert to g^{\prime} s

You should get:

a) $18.5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$

b) $\mathbf{1 . 8 5} \mathrm{g} \mathrm{s}$

1. The Gravitron ride tracer 20 seconds o spin around 5 times
a) Calculate the tip le it takes to spin around once.

$$
\longrightarrow \rightarrow \frac{20}{5}
$$

$$
\operatorname{accel}_{\text {CENTRIPETAL }}=\frac{v^{2}}{r}
$$

then divide by 10 to convert to g 's
SHOW WORK!
b) Calculate the distance the person goes around each spin. (circumference!)

$$
2 \pi r=2 \pi(5)=31.4 \mathrm{~m}
$$

c) Calculate the person's velocity. (velocity = distance / time)

$$
V=\frac{d}{t}=\frac{31.4 \mathrm{n}}{44 \mathrm{c}}=7.85 \mathrm{~m} / \mathrm{s}
$$

d) Use the formula to calculate the centripetal acceleration of the person.

$$
a_{c}=\frac{v^{2}}{r}=\frac{(7.8)^{2}}{5}=12.3 \mathrm{~m} / \mathrm{s}^{2}
$$

